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ABSTRACT 

A general principle for error estimation Is described 

which can be applied to different types of partial differential 

equations.    Particular attention is paid to nonlinear problems. 

With a programmed procedure based on this estimation principle, 

error bounds are calculated for boundary value problems involving 

the differential equation    -Au + f(x,y,u) = 0. 
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1.    The Problem! 

This paper is concerned with a certain type of differential 

inequalities which can be used for different purposes.    Here we are 

mainly interested in the application of such inequalities for error 

estimations in partial differential equations. 

For illustration,  consider the boundary value problem 

1    2 -Au +  f(x ,x ,u)  = 0 on    G, 

u = s(x ,x ) on    T» 
(1.1) 

denotes its boundary.    Under appropriate assumptions on    f   and the 

12 12 functions   u(x ,x ), v(x ,x')>    it can be shown that the inequalities 

-Au + f(x ,x ,u)  <   -Av + f(x ,x ,v) on    G, 

u(x ,x )  <£   v(x ,x ) on    r, (1.2) 

imply u(x ,x )   <   v(x ,x ) on    G = G U F • 

We are concerned with such implications for a more general 

problem. We consider a problem with n unknown functions u (x ,...,x ) 

(i = l,2,...,n) of m independent variables. These functions shall be 

defined and continuous on the closure G of a bounded open domain G 

of the m-dimensional Euclidean space with boundary T.  With the 

1 2 
where G is a bounded open domain of the (x ,x )-plane and T 
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1      Tn     1 Ink 
notations    x=(x ,...,x ) =(x ),  u = (u ,...,u ) = (u ) =u(x) 

the problem shall consist of p equations 

Fj[u](x) = r^x)       on B.     (J =1,2,.. .,p) .   (1.3) 

Each of these equations is a differential equation of 

at most second order, given on some subset B. c: G . Besides 

k 
continuity, the functions u (x)  shall have appropriate differenti- 

ability properties depending on the special problem. Let R denote 

the linear set of all u(x) which have these properties. 

Then, under what conditions is the following implication true; 

FJ,[u](x) ^F^vKx)    on B.     (j =1,2, ...,p) 

k     k - (1-A) 

imply    u (x) ^ v (x)       on G      (k = 1,2,.. .,n) 

for u, v e R . 

Example 1:        The problem (1.1)   can be written in the form (1.3) 

using: 

^[uKx) =-Au + f(x1,x2, u),       r^x) a 0,      B1 = G; 

F2[u](x) =u(x),     r2(x) =s(x1, x1), B2 = r- 

m = 2, n = l, p = 2. As R, one may choose the set of all functions 

u(x) which are continuous on G and have continuous first and second 

derivatives on G . 

Often, it is of advantage to describe the problem in a shorter 

abstract form. Let Mu denote the vector 
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Mu= (F1[u],...,FP[u])=(F'3[u]) 

which is an element of the set   S    of vectors    U = (U (x), ... ,uP(x)) 

with components    Lr(x)     defined on    B. . 
J 

Then, with r.= (r,1), the problem (1.3) is 

Mu= r ; 

and the implication (1.4.)   can be written as 

•   Mu £ Mv       implies     u ^ v, (1.5) 

where inequalities between vectors of functions are defined in a 

natural way, name]y, as holding component and pointwise. 

A problem (1.3) satisfying (l.A) is often called of monotonic 

type [3] , [7], or inverse-monotonic [13]. An operator M with property 

(1.5) is also said to be inverse-monotonic (more precisely: inverse-isotonlc). 

The reason for this notation is that (1.5) is equivalent to the following 

statement. The inverse operator M   exists and is monotonic (isotonic): 

U < V   implies  M"1!! < M V, 

if    U,V   are in the range of    M.    Therefore,  an equation    Mu = r   with 

inverse-monotonic operator    M   has at most one solution. 

We will use the following notations:    Derivatives with respect to a 

variable    x     are denoted by subscripts, for example,    ^v3^ uyöx öx   . 

If    n=l,    we will write    u=u   .    In this case,   a 

differential operator    F      of the type we consider  is 
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Fj[u] =FJ[u](x) =FJ(x,u,ui,uki)  (i,k,i = l,2,...,m) .   (1.6) 

This equation is to be understood in an obvious way» FJ[u] may- 

depend on all first and second derivatives. In (1.6), the values 

u,u. ,u, . may also be considered as independent variables of L 

function F*^. For simplicity, it will always be assumed that this 

function F*^ is defined for xcB. and all values of the other 

variables. Similar assumptions shall be made for the other examples 

of this paper. 

2. Application to Error Estimation 

Suppose the given problem Mu = r has a solution u*cR and the 

implication (1.5) is true for u, veR. Then, if v, weR satisfy 

Mw ^ r ^ Mv, 

one can conclude that 

w ^ u* < V. 

Given an approximate solution cp with defect d[(p] =-M(p + r, 

one can try to get such elements v,w in the form: 

v = cp-ßz, w = (p+ßz, where zcR is suitably chosen and ß denotes 

a real number. 

For such v,w, the statement above is equivalent to: 

M(cp-ßz) -Mcp^ d[<p] <M(9+ßz) -Mcp (2.1) 

implies 

-ßz ^u* -<p £ ßz. 



More explicitly, the inequalities 

FJ[cp-ßz] -FJ*[cp]  < -Fj[cp]+rj ^F^cp + ßz] -F^fq)] on B. (j=l,2,.. .,p)   (2.2) 

imply that 

Iu*k - cpk| < ßzk on G    (k=l,2,...,m)   (2.3) 

Example 1;    For the example of Section 1, this implication takes 

the following form: 

ßAz+f(x,cp-ßz) -f(x,cp) ^^p-f(x,cp)  < -ßAz+f(x,cp+ßz) -f(x,cp) on G, 

12 12 (2.4/ 
|cp - s(x ,x ) I < ßz(x ,x ) on T 

imply 

lu^x^x2) ^(x1^2) I  < ßz(x1,x2) on G (2.5) 

Error estimations of the form (2.2),  (2.3) are what we are 

interested in here.    It depends on the type of the problem how   cp   and 

the error bounds can be calculated.    Usually, the most difficult part is 

to calculate an approximate solution   cp   with small defect.     We realize 

that in practical applications,  it might not be the solution    u*    of the 

differential equations which is of main interest, but other things, as 

derivatives,  certain linear functionals,  etc.    In many cases,   however, 

the solution is of interest; and in even other cases, bounds for the 

solution may help to get other information which one wants to have. 
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3t    Several Proofs 

By different methods,  several types of problems have been proved 

to be Inverse-monotonic.    We sketch some of the typical proofs without 

stating all necessary assumptions concerning differentiability, etc. 

The proofs can be applied to more general problems.    Some of the results 

which we will mention do not exactly have the form (1.4.)  but involve 

the   <   sign, also. 

Elliptic boundary value problems:    We will prove  (1.2) under 

different assumptions. 

1) The Implication (1.2)   is true if on   G: 

f(x,u)  < f(x,v)     for   u<v. (3.1) 

Proof;  Suppose w = v-u has a negative minimum at x=CeG. 

Then Aw > 0, and consequently,  -Au + f (x,u) > -Av + f (x,v) at 

x = 5 in contradiction to the assumption in (1.2). 

In the same way, one can prove that 

-Au + f(x,u) <-Av+f(x,v) on G 

u ^ v on r 

if on G: f(x,u) <; f(x,v) for u ^ v. 

Using the strong raximum principle one can show that 

2) The implication (1.2)  is true if on   G: 

f(x,u)  < f(x,v)     for    u < v. 

imply    u ^ v    on    G , 



Proof [3],  [7]:    Let    w   and    K    be as before, arid let    KCQ 

be any neighborhood of    K    such that    w(x) ^0    in    K.    Then,    w 

accepts its mininurn at an inner point of    K    and satisfies    Aw ^ 0 

on    K.   Therefore,  according to the strong maximum principle for 

elliptic equations,    w(x)    is constant.     This is not possible 

because   w(0   < 0,    and    w > 0   on    !"• 

In another proof  [2], a contradiction is derived by multiplying 

the first inequality in  (1.2)  by   w,    then integrating over a small 

enough sphere with center    K    and applying Green's formula. 

The statement (1.2)   can be proved under even weaker assumptions. 

For example, in case of a linear operator with    f(x,u) =q(x)u-g(x) 

variational methods have been used    [l],   [6].     The variational problem 

which has    -Aw + q(x)w= r(x)   as its Euler equation is shown to possess 

a unique solution if on    G 

q(x)   > -X-j^ + ö, 

where    6-const > 0    and    X,    denotes the  smallest eigenvalue of the 

Dirichlet eigenvalue problem   -Au = Xu .    Then,  it is proved that in 

case    r > 0   a function    w   which has negative values does not solve 

the variational problem. 

The last result can be applied to the nonlinear case by using the 

mean value theorem of differential calculus,  assuming that    öf/^u   exists. 

3)    The implication (1.2)  is true if on    G: 

|f(x,u)> -X1 + 5. (3.2) 



Another way of extending the simple result    1    is by applying 

the idea of the first proof to   w=(v-u)/z    instead of   w = v-u, 

where    z(x)  > 0    on    G .   In case of a differentiablr function    f, 

one then comes out with the condition 

-Az + f (x,u)z > 0 on    G 

instead of (3.1). Assuming appropriate knowledge of the eigenfunction 

corresponding to X,, and choosing z close to such an eigenfunction, 

one can get the condition (3.2)  in this way, also. 

Parabolic problems:    In order to explain a typical proof for initial 

value problems, we consider a problem for one dependent variable    u 

([3] [A] [8] [9] [10] [12] [16]) i 

A)    Tte inequalities 

12 11 u2-f(x ,x ^ju-j^u.^)    <   v2-f(x ,x ,v,v1,v11) (3.3) 

for    0 < x1 < 1,      0 < x2 ^ X; 

u<v        fori   x1 = 0,lj 0<x2^X, (3.4) 

j 0 ^ x1 < 1; x2 = 0 

together imply 

u < v   for    0<x1<l,      0^x2^X, 

if the function    f    is isotonic (increasing)   with respect to its last 

variable. 

Proof;        Suppose that    w = v-u > 0   for x2 < K2
}   but   w(51,52) = 0 
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at a fixe] point    K - {K1 ^2),    Then,     w   < 0,    v^ = 0,    w11 > 0 

at    x=^.    These  inequalities contradict (3.3)  because    f    is 

i so tonic in    u.., . 

Hyperbolic Equationst      In hyperbolic equations,  comparably few 

results are  known.     In some papers  [4],   [5],   [ll]>   [15]}   identities 

are used which can be derived by Green's formula,   such as the very 

simple one  (D'Alerabert's formula) : 

ffv^/dy2 = -g[u]  + u(x) (3,5) 

where 
J 

g[u] =|[u(x1,l -x1) +u(l -x2,x2)] +|y'[u1+u2](y1,l -y^dy1 

1-x 

12 2        11 and    B     consists of all    y = (y ,y )     such that   1 -y    < y    £[ x , 

1.2/2 1-x    < y    s x , 

5)     The  inequalities 

12 ]     2 u12 4   r(x ,x ,u)  < v      4   r(x",x ,v) 

for     l-x2<x1<l,       0 < x2 < 1, 

(3.6) 

Ul 4  U2 / Vl 4 V2 

for      x2 = l-x1,   0 < x1 £ 1       (3.7) 

together imply 

2  „   1 u < v    for    1 - x^ < xx <C 1,     0 < x^ < 1 , 

if the function    f    is antitonic with respect to its last variable. 



10 

Proof;    The inequalities (3.7)   imply that   gfu]  <g[v].    Therefore, 

by integration of (3.6)  and ^sing the identity (3.5), it follows that 

u +yyf(y1,y2,u)dy1dy2 < v +/7f(y1,y2,v)dy1dy2 . (3.8) 

Suppose now,  that    w=v-u>0    in    B-,     except   x=^    where    w(0 = 0. 

Then,    w,   < 0    and    w    <[ 0   at    x=^.    These inequalities contradict (3.8) 

because    f    is antitonic in   u. 

Discussion:       While some proofs use other means,  in most of the 

proofs given above,  contradictions are derived by using conditions on 

a function   w   and its derivatives at a certain point    K.    The 

procedures differ for the different types of problems.    For the boundary 

value problem (see 1 and 2)    w(0    is minimal, while for the initial 

value problems,  the point    K —in a certain sense—is the "first" point 

where    w(5) =0    (see 4- and 5).    Because of this relation   w(5) =0,    for 

the statement U no restrictions are required concerning the 

dependence of the operator on   n,    such as,  for example,   (3.1).     (Of course, 

this pro of-technical difference has some deeper reason, which becomes 

apparent by the   formula (3.2)   involving an eigenvalue.)     The 

proofs of ^ and 5 require some strong inequalities as   (3.4-),  (3*7) .    Such 

implications, involving the <-sign, usually can be proved easier and under 

weaker assumptions; and, in fact,  they do not have the same consequences. 

For example,  the existence of   M    ,    i.e.  the uniqueness of a solution does 

not follow. 
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The   following section contains a unifying approach.    For all 

types of problems considered here,  a weaker type of implication 

involving the <-3ign can be proved in th«   same way by using conditions 

on    w    at a point    K    where    w    is minimal and    w=0 (Assumption I). 

The general type of the problem,  or the properties of a special problem 

arc   then taken into account by the construction of a certain element    z 

(Assumption II) .    Roughly spoken,  in this way the assumptions are split 

into "local" and "global"  conditions. 

A'    A Unifying Approach 

Many of the known results about different types of problems, and 

new results    also,  can be gained in a unique way by applying an abstract 

theorem on inverse-monotonic operators: 

Theorem [13] •      Suppose that the following assumptions are satisfied 

I.    For abritrary   u, ueR, 

u < ü 
imply   u ^ ü. (^.1) 

Mu ^   Mu 

II.    For a given    ve R    there exists    zeR    such that 

z > 0,     Kv<<M(v+Xz)      for    X>0. (A.2) 

Then,  for all    ueR, 

Mu < Mv     implies    u < v. (4-.3) 

Remark:      The theorem remains true if all inequalities, except 

X > 0,    are reversed. 
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The notations which occur in the theorem can be defined in an 

abstract way.    For our problem, we  define an inequality    u^ v 

between vectors of functions as component- and point-wise strict 

inequalities: 

u^ v   iff     uk(x)  < vk(x)      for all    k   and    x, 

for which these inequalities have a meaning.    Similarly,    Mu^ Mv 

is defined.  Then the assumptions take the following form: 

Assumption I;    For   u, ueR, the inequalities 

uk(x)£ük(x) (xeGj   k = l,2,...,n),              U-ti 

Fj[u](x)  <FJ*[ü](x) (xeB.j j=l,2,...,p)                (A.$) 

together imply 

uk(x)   < ük(x) (xcG;    k = l,2,...,n) .             (4.6) 

Assumption II:    There exists zcR    such that 

z(x)  > 0   on   G,  Fj[v](x)  < Fj[v+Xz] (x) (xcB , j=l,2, ...,p; X> 0) (A.7) 
«J 

The element    z    occurring in the error estimation (Section 2)  can 

often be used in Assumption II,  and vice versa. 

We will give an idea of the proof for the simple special case where 

(1.3)   consists of    p = 2   ordinary equations for    n = 2   unknown numbers 

1    2 u ,u   .    (One may consider these unknowns as constant functions defined 

on some domain    G ) .   Then, if a vector    v   is fixed,  the vectors 

u ^ v (u ^ v)       constitute a closed (respectively open)   quadrant. 
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First, notice that    z ^ 0    because of (^.2),   (^.1).    Let now 

Mu < Mv ,    but not    u < v.    Then,  the position of trie "points" 

u,  Hu,   V4 Xz ,   may be as  in Figure 1.     The rxistencr  of a point 

ü =v-+ X-Z    such as in this figure contradicts Assumption I. 

1 i 

A 

  7fM(v+A0z) 
1 
1                       , 

• 

Mu 

Mv 1 
1 
1 
1 

u' 

FIGURE 1 

This proof shows that the theorem can be generalized in different 

ways.    For example,   (A.l)   need not be required for all    u, ücR. 

Moreover,  one may consider a more general curve    v(X)     instead of 

v + Xz    (see Figure 1). 

5.     Local Assumptions 

The   general idea of proving Assumption I is as follows.    Suppose 

(A.6)   is not true.     Then,  for some    k = k   ,    w   =ü   -u      has a minimum 

w (5) =0    at some    CeCr.    This fact yields some conditions on certain 
ko first and  second order derivatives of    w        at    x = C.    The set of these 
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conditions,  together with the inequalities   w (x)  > 0    (4.4)» are 

U; n ULie i to derive a contradiction to one of the inequalities in 

(4.5).    For this, there must exist some    j      such that    F    [u] 
k 

0 contains derivatives of the component   u     ,   only.    Moreover, the 
i 

function    F       must satisfy so-ne "monotonicity-condition"  (M-condition) . 

We give some examples where this proof can be carried through if 

the given M-conditions are  satisfied.    It is assumed that the occurring 

functions possess appropriate differentiability properties.    We will 

not specify the set    R    of those functions in each case.    The examples 

can be generalized, in particular  with respect to the boundary conditions. 

Example 2: Generalization of Example 1, boundary value problem for 

one unknown function   u: 

F1[u](x)  = r^x)     for    x € G, 

F2[u](x)  = r2(x)     for    xcT 

with 

F^[u](x) = rU, u, u^ ukx) 

F2[u](x)  =u. 

(i,k,X=l,2,...,m)   (5.1) 

(5.2) 

M-condition; 

F1(x,u,ui,ukx)  >F1(x,u,u1,uki+wkp 

for    xeG,   all    u,u.,u, „    and any m x m-matrix 

(wkx) > 0, 

i.e. for any symmetric positive semi-definite matrix (ww) . 

(5.3) 
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Example  2a;      An important special cas«    it  (5.1)   la the quasi- 

linear operator 

n 
pifu] = _\^   akx(x,u,ui)uki, + c(x,u,ui) 

k,*=l 

with a coefficient rnatri" satisfying the H-conditiun; 

(akx(x,u,ui)) > 0. 

In    xe G,    EUid all    u,u, . 

For example,    this c.nditi.^n is  satisfied for the equati-n 

of minimal surfaces: 

F1[u] = 41 i (u1) 2]u11 i 2a1uzu12 - [1 -i (u,,) 2]u22 = 0, 

2 2 2 
and,  if    (u^)  +  (u )     < c   ,    for the equation 

F1[u] = -[c2 - (u1) 2]u11 + 2J1U2U12 - ' c2 - (u2) 2]i:22 = 0, 

describing the two-dimensional steady,  irrotational flow of a  compressible 

fluid. 

Example 3 i    Initial-boundary value problem for one unknown function: 

F1[u](x) =r1(x) for   xeGUr,, {5.A) 

F2[u](x) =r2(x) for    x e ^ , 

with F  as in (5.2) and F^ a special case of (5.1): 

F1[u] =um-f(x,u,ul,uki)     (i,k,i = l,2,...,m-l).     (5.5) 

G shall be a cylinder of points x,  such that (x ,...,x ~ )  is 

element of an open bounded domain G, and 0 < x < X; ro is the set 

of boundary points with (x ,.. .,x ~ ) € G, x =X, and T-, = F - H, . 
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M-Condltlon;      Condition  (5.3) applied to (5.5). 

For example,  the equation of heat conduction 

au^-(ku1)1 -(ku2)2-(ku3)3 + f = 0 

with positive thermal properties   a(x,u),    k(x,u),   and heat gener? '' on 

f(x,u)    can be written  as (5.A)    such that the M-condition is 

satisfied. 

Example W»    Semilinear hyperbolic systems of first order in normal 

form: n 

F^uJCx) =-Va'ii(x)u^ + fJ"(x,u) = 0      for    x«Gur., (5.6) 

k=l 

Fn+'3[u](x) =uj(x) =^'(x)    for x«rn+j = r-r. 

where r. denotes some part of f» 
J 

M-Condition; 

i)    fW1,...^11)  > f^x.v1,...^11) 

iuk < vk   with   k J j 
4 "    s (xeGUr.; j =l,2,...,n) 

UJ _ vo J 

11)     For each    xcT. >     the "directional derivative" 
J 

bX      1=1 

is a derivative into the closed domain G. 

Example 4a (Wave Operator) t The differential equation 
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1     2 v12 4  f,(x ,x »vlv1,v2)  = 0 

can be transformed into a system (5.6) 

T*! r   i        1,1        2        3      n F[uJ = ^ 4 u- - u    - u    = 0, 

F2[u] - u* 4 fCx^xV^u^u3) = 0, i 

F3[u] = u3 4 fCx1^2^1^2^3)  = 0. • j 

The first part of the M-condition is satisfied If    f    is antitonic 

(decreasing)  with respect to the last three variables.    For the usual 

boundary-initial value problems,  the second part is satisfied also.    A 

simple example is the characteristic initial valut  .iroblem for the domain 

0 < x^x2 < 1    with    u1    given for    x1 = 0    and for    x2 = 0(l\)t    u2 
— — 4 

given for    x   = 0(r5),    ^     given for    x   = XT,) *    (The result 5 in 

Section 3 can be obtained by applying the abstract theorem to the integral 

operator occurring in (3.3)). 

Other Examples!    The examples given above can be generalized.    Moreover, 

it is often possible to transform a given problem such that Assumption I 

becomes satisfied.    We describe some of the involved ideas using examples. 

1)    Consider a problem (1.3)  where, for    xcG,    the equations 

F^u] = (u1 4 u2)u^ 4 u^ -u2= r^x) 

o oio (.5.7) 
F2[u] =^2 -u   = r2(x), 

are given.    These equations do not have the form necessary to derive a 

contradiction to    w (0  = 0   at a point    ?; e G,    because    F^    is not 

2 12 antitonic with respect to   u .    Therefore, introduce new variables    U ,U 

and replace (5.7)   by the system 
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F^W] - u\l - U2(uJ)+ - u2{u])- + u^ - u2 = ^(x), 

F12[u,U] = -F1^-!:,^] = -r^x), 

F21[u,U] = F2[u] = r2(x),    F22[u,U] = -F2[-U] = -r2(x), 

where    2f+ =  |f | + f,    2f" =   |f |   - f.    For    xeG,    this system has 

all necessary properties, and, for    U   = -u ,    It is equivalent to 

(5.7).    As approximations, respectively bounds, for the new variables 

k k k k U ,    one can use    -cp ,    respectively    -9   ± ßz .    Then, the correspond- 

ing inequalities (2.2)   consist of equivalent pairs, which do not 

explicitly involve the positive part    f ,    or negative part    f     of any 

function,  but    |f|    instead, 

2)    If a system (1.3)  does not have "normal form", i.e. if not all 

equations contain derivatives of one variable only,  one may get this 

normal form by traiisformation of the dependent variables. 

Consider a quasi-linear system in matrix notation: 

A(x,u)u,  -f u? = 0   on    G,    together with appropriate boundary conditions. 

Suppose there exists a nonsingular matrix   ^(x,u)    and a nonsingular 

diagonal matrix   D(x,u)    such that   C~ AO = D.    Then,  the given system is 

equivalent to    D*" u. + £>' u2 = 0.    One can introduce new dependent variables 

k -1 -1 v     such that   ^   u.  = ^v,  + c,    <£   u   = ^v2 + d,    if the function    i|((x,u), 

and the vectors    c(x,u),    d(x,u)    can be determined such that (vi)p=: (VJT • 

Then , the transformed system D( ^v, + c) + (tjrVp + d) = 0 has normal form. 

For example, use v = *~ u if <b   does not depend on u. 
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In the case of the equations 

2 1        12,    1 _ 0 U  11,4-  U  U-j   +  u? =   0, 

IM 2 c2u^ + uVu2 + u^ = 0   with    c2= [ciu1)] 

which describe the one-dimensional (isentropic)  flow of a compressible 

fluid, a system in normal form can be gained in the indicated way for 

the variables    v1=F(u1)+u2,    v2=-F(ux) +u2,    where    F(p) = / ^^-do, 
/** 
r0 

6.    Constructing z 

Assumption II is not very restrictive, in the sense that something 

"not very much weaker" must be required.    In fact, for linear problems. 

Assumption II is necessary, in general.    For, if a linear operator   M 

is inverse-monotonic, and if for some    r ^ 0    the equation    Mu = r    has 

a solution,  then this solution   u = z    satisfies (A.2) 

The element    z    can be constructed for certain large classes of 

problems. 

Example 2:      If the function    F     in ($.1)  is strictly isotonic with 

respect to    u,    then    z = 1    is appropriate.    More complicated functions 

z    yield weaker restrictions on    F^.    For example, the function 

/• 

-P(r0-t) 
z= Ite   '   dt, has been used [13], where r^ is the radius of 

T 

an open sphere   K 3 G    and   r   denotes the Euclidean distance of its 

center from    x. 
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Examples 3 and ^a; For initial value problems often very 

simple functions    z    are satisfactory.    In Example 3> Assumption II 
m 

is satisfied with    2 = e        ,   II    large enough, if    f    obeys a certain 

one-sided Lipschitz-condition.    In Example /^a, a similar condition 

is sufficient if    zk = e^X+X^    is used    (k = l,2,3). 

In properly exploiting the theorem one can also gain conditions 

of more theoretical nature,  like (3.2).    Consider, for example,  the 

problem (1.1) withf = q(x)u- g(x),    and assume that    r   and    q(x)    are 

sufficiently smooth.    Then,  for any such       f       satisfying  (3.^)» and 

&(x)  s 1,    s(x)  a 1,    the problem (l.l)  has a solution    z.    For example    z = 1 

for    q = 1.    Thus, for    q = 1, the Assumption II is satisfied.    But it 

is also satisfied for any other   f=qu   satisfying  (3.2), because 

q(x)     can be connected with   q s 1    by a curve 

q(x,t)  = tq(x)  + (1-t)   (0 ^ t ^ l).    The corresponding    z(x,t)    depend 

continuously on    t,  and    z(x,0)  > 0 on G.    If    z(x,l)  > 0 on G    would 

not be satisfied, then for some    te(0,l)]:  z(x,t)  ^ 0 on G,    but not 

z(x,t) > 0 on    G.    This contradicts Assumption I.    Obviously, this is 

a very special case of far more general results. 

7.    A Program 

The preceding sections have shown that, in principle, the method of 

error estimation of Section 2 can be applied to many types of problems. 

Of course, for a concrete problem, usually a lot of additional considera- 

tions are necessary to make the method work. To investigate the practical 
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application, a program has been written for the problem (1.1).    The 

general idea is as fol   DWS. (For convenience, we use partly different 

notations than before.    For example, we write    (x,y)     instead of 

1    2 
(x ,x );    and subscripts do no longer denote derivatives.) 

Step Di    Calculating Approximations by the Difference Kethod, 

(This step is not needed for linear problems.)    The ordinary difference 

method is applied to calculate approximate values    ü. .    at the net-points 

(x.,y.)eG   of a rectangular net.    If,  for example, the condition  (3.2) 

is satisfied and the mesh width is not too large, the nonlinear difference 

equations can be solved by the iterative procedure of Plcard or I.ewton. 

We have restricted ourselves to cases where the Picard procedure converges 

( |f  |   < \   - 6) , and we have solved the nonlinear systems by a combination of 

Picard's procedure and the point-overrelaxation method. 

Step A:    Calculating an Approximation    cp(x,y) .    A development 

cp = cp   + ai9i + •*' + a cp     with properly chosen functions    cp. (x,y)    is 

set up.    For calculating the constants    or, ,    the defect 

d, [cp] = Acp - f(x,y,cp)    is replaced in the net-points    (x. ,y.)    by the 

linear approximation 

Q1[cp] = ucp - f(x,y,u) - fu(x,y,ü) (cp-u)      with   ü(xi,y )  = u     . 

In order to get "small" defects    &.[$]  on G,   and    dJ(p] =-«n + s on f,    an 

orthogonal!zation method is applied: 

rk(d1[Cp],tk)1 +  V^*]» V2 = 0 (k = l,2,...,m), (7.1) 
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where ^.  and ^.  are properly chosen functions, the constants Yx 

and 6,  are only Introduced for computational convenience, and 

( > )■[>  ( » )o denote discrete inner products. Forexample, 

(ujv), = Z w. .u(x, ,y.)v(x. ,y,) with given weights, involving all net- 
«J v v 

points in    G.    The linear system    (1.7)   for the   a,     is solved by an 

elimination method. 

Step El    Calculating an Error Bound.    For a chosen function    z,    one 

determines a constant    ßn    such that 

l^t^l I < ß0{-^z + fu(x, y, <p)z]   on G,     |d2[<p] | ^ ß0z    on f. 

Practically, this is done for points    (x,y)    in a finer net.    Then, if 

ß_    is small enough,  the desired inequalities {2,A)  hold for a 

number   ß,    somewhat larger than    ß-,    say    ß = l.Olß  .    This has to be 

checked.    If this is so,  then the error estimation (2.5)  holds. 
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8. numerical Examples 

The program of Section 7 has been used to calculate appro;dmations 

and corresponding error bounds for the following problems: 

1. -Au = 1 for |xl,ly| < 1, 

u = «(cos TTX + cos ny)     on the boundary. 

2. -AU = 1    for    |x|,|y|  < 1, 

u = 0 on the boundary. 

3. -Au = eU for |xl,|y| < 1, 

u ■= 0 on the boundary. 

A. -Au = -e  for |x|,|y| < 1, 

u = 0 on the boundary. 

The problems 1 and 2 were mainly calculpted to check how the method 

works, before starting the nonlinear problems 3 and /+. The general 

program is constructed to handle more complicated problems. However, we 

did not accomplish to compute more examples during the available time. 

In all of these problems we chose a square net with mesh width h = 0.0^. 

In Problem 1, we used the development 

cp = cpQ + (1 - x2) (1 - y2) (Q^ +• • •+ QMJJ (8.1) 

with polynomials ui. having appropriate symmetry properties: 
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1,  x   + y ,    x y ,..., (8.2) 

and 

cp0 = «(cos nx + cos ny) . 
2TT 

As functions    ^. ,     there were used orthogonal polynomials 

P0, P2(x)   +P2(y),    P2(x)P2(y),... (8.3) 

where   P. (x)    is proportional to the    i      Legendre polynomial.    Finally 

Yk = 1,    6k = 0    (k = l,2,...,m)j    Wj^. = 1    (i, j = 1,2,.. .,m),   (8.4) 

and in Step E 

z = 2 - (x2 + y2). (8.5) 

In this way, we got the following error estimations for Problem 1. 

For 

m= 4:  Iu*(x,y) - cp(x,y) | < 0.0093 (2 - x2 - y2)  (|xl,|y| < l) 

where cp(0,0) = 0.326 708; 

m = 6:  |u*(x,y) - cp(x,y) | < 0.0064 (2 - x2 - y2)  (|x|,|y| ^ l) 

where cp(0,0) = 0.326 834J 

m=9:  Iu*(x,y) - cp(x,y) | < 0.000270 (2 - x2 - y2)  (|x|,Iy|^l), 
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In a first run we hai tried with the polyrunials in (8,2) as 

functions |.  instead of (8,3) • But then, the linear systems which 

determine the constants or,  became ill-conditioned for ra = 6 and 

m = 9> and the corresponding approximations «p were less accurate 

than the approximation for m = ^, 

For Problem 2,  we did not apply the approximation and estimation 

procedure immediately, because Au is discontinuous at the corners 

of the domain. The singularities were removed by introducing a new 

variable 

v = u + p, (8.6) 

where    p(x,y)    satisfies 

Ap = 0    for all    x,y,    except at the corners, 

Ap = 1    at the corners. 

The function     p(x,y)    consists of four sumraands of the type 

-1        2 
TT    Im(z    log z),    each of them belonging to one of the corners.    For 

example,    z=l+x+i(l+y)     for the corner    (x,y)  = (-1,-1).    More 

explicitly, 

P(x,y) = „(?! + P2 ^ P3 + P4) 

with 

Pj = q(x,y),    p2 = q(-y,x),    p3 = q(-x,-y),    p^ = q(y,-x) 

and 

q(x,y) = (1 + x)(l + y)  log [(1 + x)2 + (1 + y)2] 

+ [(1 +x)" - (1 +y)^] arctg^ 
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The transformed Prüblem 2'  then ic 

-Av = 2.    for    |x|,|y|  < 1, 

v = p(x,y)    at the boundary, (8.7) 

The procedure in Section 7 was applied to this problem.    We again used 

a development (8.1)  with   u.    as in (8.2), but 

cp   =i[H(x)  4  H(y)   - H(l)] 
''O     n' 

with 

H(x) = h(x)  + h(-x) 

and 

h(x)  = 2(1 + x)  log  U + (1 + x)2] 

+ U - (1 + x)   ] arctg t(l + x)   -TT. 

This function    9     satisfies the boundary condition (8.7). 

With functions    \|f,     as in  (8.3) >  the quantities in (8.A), and    z 

in (8.5), we got the following error estimation for    m = A: 

|v*(x,y)   - (p(x,y) I =   |u*(x,y)  + p(x,y)  - cp(x,y) |  < 

< 0.000 002 (2 - x2 - y2)  (|x|,(y|^l) 

where 

cp(0,0) = 1.177 227 9, 

p(0,0) = 0.882 $A2 A, 

cp(0,0) -p(0,0) = 0.291* 685 5. 
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Of course, the error bound does not take Into account the rounding 

errors which occurred during the calculation of cp(x,y) according 

to  (8.1). 

For the linear Problems 1 and 2, we could also have used functions 

cp   which satisfy the differential equation instead of the boundary 

condition.    (Then,    r   = 0,    6,  = 1 (k = 1,2,... ,m)) .    3ut,  this is not 

possible for the nonlinear problems 3 and 4., and, as mentioned above, 

the linear problems mainly served to check the procedure. 

The Problem 3 also was transformed using (8.6) before applying 

the approximation and estimation procedure.    The transformed Problem 3'  is; 

^v= e-p(x,y)ev   for    lx|,|y|  < 1, 

v = p(x,y)    on the boundary. 

In Step A and Step E, we used the same quantities as in Problem 2'. 

In this way, we got the following results for    m = 6: 

lv*(x,y) -cp(x,y) I =   |u*(x,y) +p(x,y) -cp(x,y) |  < 0.001 02(2 - x2 - y2) 

for    |xl,lyl <1, 

where:    cp(0,0)  = 1.278 072 3, 

cp(0,0)   - p(0,0) = 0.395 529 9, 

and the approximations    v(0,0)    for    v*(0,0), 

ü(0,0)    for    u*(0,0),  obtained by the difference method,  are 
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7(0,0)  = 1.277 97^ 7, 

ü(0,0) = v(0,0)  - p(0,0) = 0.395 ^32 3. 

In Problem U we proceeded similarly, except that now the transformation 

v = u - p 

was used.    The results for   m = 6   were: 

Iv*U,y)   - ¥(x,y)j =   |u*(x,y)   - p(x,y)   - cp(x,y)| < 0.00038 (2 - x2 - y2) 

where: 9(0,0) = -1.127 658 9, 

9(0,0)  + p(0,0) = -0.2^5 116 5, 

7(0,0)  = -1.127 576 2, 

u(0,0)  = v(0,0)  + p(0,0) = -0.2A5 033 8. 
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